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ABSTRACT
 

Contrast energy was proposed by Watson, Barlow, & Robson (Science, 1983) as a useful metric for representing 
luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal 
observer. We propose here the use of visible contrast energy metrics for detection and discrimination among static 
luminance patterns. The visibility is approximated with spatial frequency sensitivity weighting and eccentricity 
sensitivity weighting. The suggested weighting functions revise the Standard Spatial Observer (Watson & Ahumada, J. 
Vision, 2005) for luminance contrast detection , extend it into the near periphery, and provide compensation for duration. 
Under the assumption that the detection is limited only by internal noise, both detection and discrimination performance 
can be predicted by metrics based on the visible energy of the difference images. 
Keywords: visual  discrimination, visual detection, luminance contrast, contrast sensitivity function, contrast  energy,  
internal noise, ideal observer.

INTRODUCTION 

The goal of this paper is to provide methods for predicting detection and discrimination performance for static 
luminance contrast images based on a single channel model that we have previously developed for detection1 and 
discrimination.2 The energy version of the Standard Spatial Observer metric 1 is updated to allow for its extension into 
the near periphery, variations in the CSF with duration, and an explicit model that allows different performance levels to 
be used to define the threshold. The ideal observer discrimination model used to predict acuity 2 is related to a 
corresponding contrast discrimination metric and simple examples are provided to illustrate its use.  Matlab programs are 
also provided.

Contrast Energy 

Contrast energy was proposed by Watson, Barlow, & Robson 3 as a useful metric for representing luminance contrast 
target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer.  Contrast 
energy is computed from the digital contrast image C(x,y) using the pixel area dx dy, and the energy equivalent duration 
dt,

E = dx dy dt Σx,y C(x,y)² (1)
If the signal has been windowed by a temporal function  0 ≤ T(t) ≤ 1, the energy equivalent duration dt is

dt = df Σt T(t) 2, (2)
where df is the frame duration.
Contrast energy is conveniently represented on a decibel scale relative to the best performance of observer HB 3.

dBB = 10 log10(E / 10 –6 deg2 sec). (3)

VISIBLE ENERGY METRIC FOR DETECTION

The inputs for the detection metric are a digital luminance image, L(x,y), the pixel area, dx dy, in deg2, and the duration, 
dt, in sec.

Visible contrast image

Watson and Ahumada1 computed the contrast image C(x,y)  from a luminance image L(x,y)  by subtracting and then 
dividing by the background luminance level L0.

C(x,y) = (L(x,y) – L0) / L0. (4)
The contrast image C(x,y) is filtered by a frequency domain contrast sensitivity filter, CSF(fx,fy), and then multiplied by 
the space domain eccentricity function S(x,y) to obtain the visible contrast image, Cv(x,y).
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Cv(x,y) = S(x,y) DFT–1(DFT(C(x,y)) CSF(fx,fy)), (5)
where DFT is the digital Fourier transform and DFT–1 is its inverse.

An alternative approach is to base the contrast on a local luminance function.  The luminance image is first filtered by an 
optical blur filter, O(x,y), to obtain the optically blurred luminance image, Lo(x,y),

Lo(x,y) = L(x,y) * O(x,y) =  DFT–1(DFT(L(x,y)) DFT(O(x,y))) (6)
where the * indicates convolution. Next, a background  luminance image, Lb(x,y) is computed as a weighted average of 
the optically blurred image further blurred by a background blur function, B(x,y), and the also doubly blurred previous 
background, B0(x,y).

Lb(x,y) = a(dt) Lo(x,y) * B(x,y) + (1–a(dt)) B0(x,y), (7)
where the weight a(dt) is a function of the duration, taking values between 0 and 1.
The contrast image, C(x,y), is then computed from the optically blurred image by subtracting and dividing (point by 
point) the background image,

C(x,y) = ( Lo(x,y)  – Lb(x,y)) / Lb(x,y). (8)
Finally, the visible contrast image, Cv(x,y), is computed by multiplying (point by point) the contrast image by an 
eccentricity sensitivity function, S(x,y),

Cv(x,y) = C(x,y) S(x,y) . (9)
Although slightly more complex, the latter formulation allows the signal to be added to a non-uniform background as 
demonstrated by Bowen and Wilson.4  It separates the neural surround component of the CSF from the usually primarily 
optical center component and emphasizes that the zeroing function of the background may be separated from the gain-
setting function.  Since both the background during the signal and the preceding background  contribute to the local 
luminance, the dependence of the relative weighting of  the center and surround is naturally associated with the signal 
duration.

Visible Contrast Energy 

The visible contrast energy metric for detection is then computed using the standard contrast energy formula3,
Ev = dx dy dt Σx,y Cv(x,y) 2. (10)

This is conveniently represented on a decibel scale relative to the best performance of observer HB.3
dBV = 10 log10(Ev / 10 –6 deg 2 sec). (11)

Convenient  Functions and Parameters

When the visible contrast image is computed using Equation 5, the contrast sensitivity  function may be computed as
CSF(fx,fy)) = exp(–f / 12 cpd) – a(dt) exp(–(f / 2 cpd) 2), (12)

where f is the radial spatial frequency, f=√(fx 2+fy 2).

When the local luminance approach is used, corresponding functions are
O(fx,fy) = exp(–f / 12 cpd) , (13)
DTF(B(x,y)) = exp(–f / 2 cpd) (14)

The suggested background weight function is
a(dt) = 1 – exp(–dt/ 0.13 sec). (15)

Finally, a suggested sensitivity function is,
S(x,y) = 1/(1+4.4(1– exp(–r / 6.42 deg))), (16)

where r = √(x 2+y 2). 

Appendix A contains Matlab code implementing the above calculations.

Parameter estimation

The sensitivity function (Equation 16) is the inverse of a function that has been fit to human cone spacing data.5 If each 
cone contributes a constant amount of independent noise to a pixel, the noise standard deviation will be proportional to  



the square root of the density, and the signal will be proportional to the density, so the resulting sensitivity (signal-to-
noise ratio) will be proportional to the square root of the density, i. e. the inverse of the cone spacing. We fit the spacing  
function in degrees for eccentricities out to 20 deg by

s(r) = 0.592 + 2.605 (1 – exp(– r / 6.424 deg). (17)
The square root of the density normalized to be 1 when r = 0, will be

S(x,y) = S(r) = 1/s(r)  = 1/(1+ 4.4 (1–exp(–r /6.42 deg))). (18)

The 41 Modelfest6 mean thresholds (omitting the noise and San Francisco images) were then used to find the CSF 
parameters, giving a center frequency cutoff of 7.31 cpd, a surround cutoff of 1.889 cpd, and a surround weight of 0.849. 
The equivalent energy duration in the Modelfest experiment was 0.23 sec, so the corresponding surround weight time 
constant is 0.122 sec. When the local luminance approach was used, the estimated parameters were optical cutoff , 7.33 
cpd; background blur cutoff, 2.14 cpd; and time constant 0.141 sec. 

The recommended time constant is just the average of the two estimates.  

If the filters were Gaussian, the simple CSF surround cutoff fs should be the combination of the optical filter cutoff fo  
and the background filter fb,

fs = 1/(1/fo 2 +1/fb 2) 0.5 = 1/(1/7.31 2 + 1/2.14 2) 0.5 = 2.0538. (19)
The suggested value,  fs = 2,  looks like an average of the two estimates,  but  it  really is just a rounding off of the  
background cutoff fb.  When the optical cutoff is increased to 12 cpd, its effect  on the background cutoff becomes  
negligible.

Watson and Ahumada 2 found that the Modelfest-derived center frequency cutoff was much too low to model acuity. 
Deely and Drasdo 7 have modeled the optical transfer function as an exponential to a power, where both the cutoff and  
the power are a function of the pupil size P in mm.

O(f) = exp(–f/(20.9–2.1 P) 1.3 – 0.07 P (20)
The pupil size giving an exponent of 1 is 4.3 mm and the corresponding cutoff is 11.9 cpd, which rounds to 12.

A METRIC-VALIDATING MODEL

A simple model for detection is to assume that internal white noise is added to the visible contrast image and that 
detection or recognition is then performed by an ideal observer.  If the individual pixels of the noise are independently 
normally distributed with mean zero and standard deviation σ, it is convenient to represent the noise by its expected 
contrast energy per pixel,

N = dx dy dt σ 2. (21)
N is usually referred to as the two sided noise spectral density.

Yes-No Performance

Signal detection theory  8 shows that the ideal observer in a Yes-No detection task in white noise cross multiplies the 
noisy possible signal with the potential signal Cv(x,y), forming a normalized decision variable Z which has unit variance 
and whose mean

E(Z) = d' = √(Σx,y(Cv(x,y)2)/s2) = √(Ev/N), when the signal is present (Signal+Noise),
         = 0, when the signal is absent (Noise Alone). (22)

For a criterion c, such that Pr(Yes) = Pr(Z>c), the hit and false alarm rates are given by
Pr(Y|Signal+Noise) = Fz(d' – c) ; Pr(Y| Noise Alone) = Fz(–c), (23)

where Fz is the cumulative standard normal distribution. The value of d' can be computed from the hit and false alarm 
rates using the inverse of Fz, Fz–1 as

d' = Fz–1(Pr(Y|Signal+Noise)) – Fz–1(Pr(Y|Noise Alone)). (24)
In the Yes-No case, when d' = 1, Ev = N.  

Two-Interval Forced Choice Performance



In  the  two-interval  forced-choice  (2IFC)  procedure  with  a  signal  in  either  the  first  or  second  interval  with  equal 
likelihood, the ideal observer cross multiplies as above to obtain a normalized Z1 for the first interval and a value Z2 for  
the second, takes the difference Z1 – Z2, and responds interval 1 if the variance normalized variable Z = (Z1 – Z2) /√2 is 
greater than zero.  
We can define the 2IFC detectability index d' as

d' = E(Z | interval 1) – E(Z | interval 2) 
    = √(E/N)/√2 – (–√(E/N)/√2
    = √( 2Ev/N). (25)

The 2IFC can be regarded as a Yes-No experiment where the signal alternatives are signal in interval 1 or 2 (S1 or S2) 
and the response bias has been set so that Pr(R1|S1) = 1 – Pr(R2|S1). Using Equation(20) we see that in the 2IFC case

d' = Fz–1(Pr(R1|S1)) – Fz–1(Pr(R1|R2)) = Fz–1(Pr(R1|R1)) – Fz–1(1–Pr(R1|R1)) = 2 Fz–1(Pc) (26)
and

Pc = Fz(d' / 2). (27)

For the Modelfest4, the threshold was defined to be Pc = 0.84 = Fz(1), corresponding to d' = 2. Thus at this threshold, 
2 Ev/N = 4, and

Ev = 2 N. (28)

Estimating N

Watson and Ahumada1 estimated a contrast gain factor G to predict the mean Modelfest thresholds such that
G2 dx dy Σx,y Cv(x,y)2 = G2 Ev/dt = 1. (29)

Substituting Equation 28 for Ev gives
N = dt / (2 G2 ). (30)

For the functions and parameters above, the sensitivity estimates are  G = 452 and 453 for the direct CSF and the local  
luminance methods, respectively.  The resulting estimate of N is –2.5 dBB (re 10–6 deg2sec).  

Equations 22 and 24 for the Yes-No case and Equations 25 and 27 for the 2IFC case give predictions for detection based  
only on the visible contrast energy metric Ev and the internal noise level parameter N.

DISCRIMINATION

To simplify the notation for discriminating among M equally likely visible contrast images,  we will drop the space 
indices x and y and regard the visible contrast images as vectors,

 Cv(x,y,j) = Cv(j), j=1, M. (31)
In the presence of a white noise image vector W with power spectral density N, the unbiased ideal observer picks the 
image k with the smallest distance to the noisy image.  If image j is presented, the squared distance to the kth image is

|| Cv(j) +W – Cv(k) ||2 = ||Cv(j) + W||2 + ||Cv(k)||2 – 2 (Cv(j)•Cv(k) + W•Cv(k)), (32)
where the • indicates the inner product of images regarded as vectors and ||X||2 = X•X. The first of the three terms on the 
right in Equation 27 is not a function of k, so the observer is trying to find the k that maximizes

 Cv(j)•Cv(k)  – 0.5 ||Cv(k)||2 + W•Cv(k) (33)
Simulation of this model seems to involve many calculations.  For a high resolution image, just the calculation of a  
simulated W involves many operations.  However, as we have pointed out,2 the first two terms on the right side of 
Equation 32 only involve components of the M by M matrix 

S = (Sj,k) = (Cv(j)•Cv(k)). (34)
The M random variables W•Cv(k) are normally distributed with mean zero and covariance matrix S, so they can be 
simulated by multiplying a sample of M independent Gaussians by F, a factorization of S such that

S = F FT. (35)
Since S is a covariance matrix the singular value decomposition of S provides an M by M orthonormal matrix U and a  
diagonal matrix D such that U D UT = S.  

F = U D0.5  (36)
gives an appropriate factorization.



When  all  the  Cv(k)  have  the  same  energy,  the  ideal  observer  becomes  a  cross-correlator,  looking  for  the  k  that 
maximizes

 Cv(j)•Cv(k)  + W•Cv(k). (37)

Orthogonal, equal energy visible contrast images

If the M images are orthogonal, Cv(j)•Cv(k) = 0, and equal in length, L =  ||Cv(j)||, and, hence, energy, all of the cross 
products are equal to zero except for the correct one which will be L2.  The M noises are all independent with variance 
σ 2 L 2.  Dividing these noisy cross products by σ L, the ideal observer will select the largest of M variables where one of 
them has a mean of L/σ and a variance of 1 and the other M–1 have a mean of 0 and a variance of 1.  If we define

δ = L/ σ = √( Ev / N), (38)
then the probability of a correct discrimination Pc is

Pc = ʃ Fz(x) M–1 fz(x–δ) dx , (39)
where Fz and fz are the cumulative and density distribution functions of the standard normal. Figure 1 shows the 
resulting performance curves for M = 2,4,10, and 26.

When M=2, Pc probability that a standard normal variable z0 with mean 0 and variance 1 is less that an independent 
standard normal variable zd with mean δ and variance 1, which is

Pr(Correct) = Pr((zd –z0 > 0) = Fz(δ/√2). (40)
The Yes/No detection Equation 15 implies that 

d' = Fz–1(Pr(Correct)) – Fz–1(1– Pr(Correct))
    = δ /√2 – (–δ /√2) = √2 δ. (41)

Figure 1. Probability of a correct discrimination for the orthogonal, equal energy visible contrast image model.



A general discrimination metric

Dalimier and Dainty 9 have proposed basing a general discrimination metric on the total squared distance from each 
visible contrast pattern to the average of the M patterns.  If we let

Av = Σj Cvj /M, (42)
Their metric is

d' 2= (4/(σ 2 M)) Σj ||Cvj – Av|| 2 . (43)
They introduced the 4 so that when M = 2, the formula would reduce to the usual Yes/No d' formula. When M=2, the 
mean of any two points is halfway between them,  ||Cv1–Av|| = ||Cv1–Av||= ||Cv1–Cv2||/2, so

d' 2 = (4/(σ 2 2)) 2 ||Cv1–Cv2|| 2/4 = ||Cv1–Cv2|| 2/ σ 2. (44)

As shown in Appendix B, the total of the squared distances among all M 2 pairs is 2 M times the total of the squared 
distances from the patterns to the mean pattern,

Σj,k ||Cvj – Cvk|| 2 = 2 M Σj ||Cvj –Av|| 2. (45)

If we do not count the distances from each point to itself the actual number of distances among points is M 2 – M, the 
average distance among the points is

(1/(M(M–1)) Σj,k ||Cvj – Cvk|| 2  = (2 /(M–1)) ||Cvj –Av|| 2. (46)
That is, the average distance among the points is twice the average distance of each point to the mean when M–1, the 
number of linearly independent distances, is used in the denominator.

If Dalimier and Dainty 9 had started with the average distance among the points, the formula would have needed no 
correction factor  

d' 2 = (1/(M (M–1) σ)) Σj,k ||Cvj – Cvk|| 2 = (2/( σ (M–1)) Σj ||Cvj–Av|| 2 (47)
which needs no correction for M=2.

Another metric which has been used 10 for  comparing alphabets is the average correlation among the patterns.
If we define the average of vector Cvk to be Avk, and Dvk to be Cvk – Avk, the average correlation ρ is

ρ = (1/M(M–1)) Σ j ≠ k  Dvj)•(Dvk /(||Dvj|| ||Dvk||). (48)
If the patterns have equal lengths, L =||Cj|| and equal means A = Avj, they also have equal lengths about their own mean, 
V, since
 V 2 = || Dvk|| 2 = ||Cvj – Avj|| = ||Cj|| 2 – ave(Cj) 2 = L 2 – A 2. (49)
In this case, as shown in Appendix B,

ρ = 1– (1/((M–1) V 2)) Σj ||Cj – C|| 2 . (50)
Again, the natural divisor for the average squared distance to the mean is M–1.

    
In the general orthogonal case, as shown in Appendix B, 

(1/(M–1) Σj ||Cv(j) – Cv||2  =  (1/M) Σj ||Cv(j)|| 2 . (51)
If the lengths are also equal, 

(1/(M–1)) Σj ||Cv(j) – Cv||2 =  (1/M) Σj L 2 = L 2 . (52)

Corresponding to Equation 8 for detection, a resolution-independent metric for discrimination is given by
Ev = dx dy dt (1/(M–1)) Σj ||Cv(j) – Cv||2 . (53)

When used with Equations 38 and 39 (Figure 1) it  correctly predicts discrimination performance for equally likely 
alternatives when M =2 and should be useful  both for finding starting values for N in model simulations and providing a 
way of  equating results from studies using different values for the Pr(Correct).

Example 1: Landolt C's

Figure 2 shows a rectangular  version of the familiar Landolt  C pattern.  Since the distances among the patterns are 
unchanged by adding or subtracting a constant pattern from all M patterns, the ideal observer is unaffected by such a  



manipulation.  If an unbroken square is subtracted from all the patterns, the result is 4 points that are non-overlapping,  
and thus orthogonal.  Performance on this pattern set is thus predictable from Equation 26 and Figure 1.

Figure 2.  Rectangular Landolt C patterns.

Example 2: Tumbling E

Figure 3. Tumbling E patterns.
Figure 3 shows four Tumbling E patterns.  Each pattern has 17 pixels, so they have equal energy.  The pixel distances  
between the reflected versions are 4 and the rotated versions are 8. These patterns are not orthogonal, but do have equal 
energy. Equation (24) evaluated at M=4 and d'=1 results in the prediction Pc = 0.552  Model simulation for 10,000 trials  
led to the 95% confidence interval for Pc = 0.538 ± 0.098, which is statistically significantly lower, but usefully close. 
Appendix A shows the Matlab code for the simulation and the code for computing Pc. 

Estimating N from discrimination

Watson and  Ahumada2 used  simulation  to  fit  the  model  (their  model  ID)  to  Sloan  letter  acuity data  (M=10)  and  
generated estimated values of σ in decibels of contrast for four observers (-0.5, -1, -2.2, -4.7).  Their pixel resolution was 
313.91 pixels/deg. Assuming a fixation duration of 0.25 sec gives an additive constant for estimating N as 60 – 20log10 
313.91 + 10log10 0.25 = 10.1 dB. The median of the four estimates is 8.5 dBB. Less ideal observer models gave smaller  
estimates for N. Model XA allowed for spatial uncertain and ignored energy (used cross correlation alone) and gave an N 
estimate of  5.8 dBB.  Model XL with spatial uncertainty and templates based on the unfiltered letters gave an estimate  
of -1.3 dBB, closer to the estimate from detection.
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Appendix A: Matlab Code

Contrast image to visible contrast image

function cv = con2convis(duration,pixperdeg,contrast_image)
im = contrast_image;
n = size(im,1) ;
ppd = pixperdeg;
f0 = 12; f1 = 2; % cpd
a = 1 – exp(-duration) ; 
csf = fltexp2(n,f0*n/ppd) - a*filtgaus2(n,f1*n/ppd);
cv = real(ifft2(fft2(im).*csf)) ;
cv = cv.*curcio2(n, ppd) ;

function cv = lum2convis(duration,pixperdeg,lum_image, background)
im = lum_image;
n = size(im,1) ;
ppd = pixperdeg;
f0 = 12; f1 = 2; % cpd
a = 1 – exp(-duration) ; 
ocsf = fltexp2(n,f0*n/ppd);
bcsf = ocsf.*filtgaus2(n,f1*n/ppd);
imo = real(ifft2(fft2(im).*ocsf)) ;
imb = real(ifft2(fft2((1-a)*background+a*im).*bcsf)) ;
cv = imo./imb -1;
cv = cv.*curcio2(n, ppd) ;

% Subroutines 

function filter = fltexp2( n, f)  % Exponential
  filter = exp(-fltf2(n)/f) ;

function  flt = filtgaus2(n, f)   % Gaussian
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  flt1 = fltgaus1(n,f);
  flt=flt1'*flt1;

function filter = fltgaus1( n, f) % 1-D Gaussian
  filter = fltf1(n)/f;
  filter = exp(-(filter.*filter))  ;

function f = fltf2(n)      % 2-D frequencies in cycles per image
  f1 = fltf1(n);
  f = repmat(f1.*f1,[n 1]) ; % fx^2 
  f = sqrt(f + f') ;         % sqrt(fx^2 + fy^2)

function f = fltf1( n)      % 1-D frequencies in cycles per image
  n2 = ceil(n/2);
  f = [[0:floor(n/2)] [1:n2-1]-n2];

function window = curcio2(n,ppd)
% windowing function from Ahumada and Watson (2013)
% centered at n/2 + 1 if n even , 1+floor(n/2) if n is odd
xe = 5.72; 
g = 4.09;
x = ([1:n]-(1+floor(n/2)))/ppd; % degrees
x = repmat(x.*x,[n 1]) ;
x = sqrt(x + x');
window = 1 ./ (1+g*(1-exp(-(x / xe)))) ;

Tumbling E Discrimination Model Simulation

s = sqrt(0.3)*[ % normalized so that d = 1
     [1 1 1 1 1 ...
      1 0 0 0 0 ...
      1 1 1 1 1 ...
      1 0 0 0 0 ...
      1 1 1 1 1 ] ; ...
     [1 1 1 1 1 ...
      0 0 0 0 1 ...
      1 1 1 1 1 ...
      0 0 0 0 1 ...
      1 1 1 1 1 ] ; ...
     [1 0 1 0 1 ...
      1 0 1 0 1 ...
      1 0 1 0 1 ...
      1 0 1 0 1 ...
      1 1 1 1 1 ] ; ...
     [1 1 1 1 1 ...
      1 0 1 0 1 ...
      1 0 1 0 1 ...
      1 0 1 0 1 ...
      1 0 1 0 1 ] ]'; 
s = s - repmat( mean(s,2),[1 4]) ;
d = sum(sum(s.*s))/(size(s,2)-1) ;% 1
ss = s'*s ; % k x k
[u , x, v] = svd(ss) ;



f = u*(x.^0.5) ;
cor = repmat(ss(1,:),[n 1])+randn(n,k)*f' ;
Pc = mean(cor(:,1) > max(cor(:,2:k)')');
% 0.5383 % plus or minus 1.96 *sqrt(0.5*0.5/10000) = 0.01

Pc for orthogonal equal energy visible contrast images (Equation (25))

M = 4; d = 1;
F = @(x)exp(-0.5*x.*x).*(1+erf((x+1)/1.41421356237310)).^(M-1);
Pc = quad(F,-4,4)*0.5^(M-1)/sqrt(2*pi); % 0.5518

Appendix B: Derivations

Equation 45

The total of the squared distances among all M 2 pairs is
Σj,k ||Cj – Ck|| 2  
= Σj,k ((Cj – Ck)•(Cj–Ck))
= Σj,k (Cj•Cj + Ck•Ck –2 Cj•Ck)
=  M Σj Cj•Cj + M Σk Ck•Ck – 2 Σj,k Cj•Ck
=  2 (M Σj Cj•Cj) – Σj,k Cj•Ck). (B1)

The sum of the squared distances to the mean is
Σj ||Cj –C|| 2
= Σj  ((Cj – C)•(Cj–C))
= Σj (Cj•Cj + C•C –2 C•Cj)
= Σj Cj•Cj + Σj C•C – 2 Σj C•Cj
= Σj Cj•Cj  – M C•C
= Σj Cj•Cj – (1/M) (Σj Cj)•(Σk Ck)
 = Σj Cj•Cj – (1/M) Σj,k Cj•Ck. (B2)

Thus
Σj,k ||Cj – Ck|| 2 = 2 M Σj ||Cj –C|| 2 (B3)

Equation 50

ρ = (1/(V 2 M(M–1)) (Σj ≠ k (Cj–A)•(Ck–A)  )
= (1/(V 2 M(M–1)) (Σj,k (Cj–A)•(Ck–Ckbar)  – Σj ||Cj–A|| 2)
= (1/(V 2 M(M–1)) (Σj,k (Cj.Ck) –M 2 A 2 – M V 2). (B4)

From Eq 27 we see that
 Σj,k Cj.Ck. = M ( Σj Cj.Cj –Σj ||Cj –C|| 2 ) = M 2 L 2 – M Σj ||Cj – C|| 2
So that 

ρ =  (1/(V 2 M(M–1)) (  M 2 L 2 – M Σj ||Cj – C|| 2  –M 2 Cbar 2 – M V 2)
=  (1/(V 2 (M–1)) (  M L 2 –  Σj ||Cj – C|| 2  –M Cbar 2 – V 2)
=  (1/(V 2 (M–1)) (  M V 2 –  Σj ||Cj – C|| 2   – V 2)
=  (1/(V 2 (M–1)) (  (M–1) V 2 –  Σj ||Cj – C|| 2  )
= 1– (1/(V 2 (M–1))) Σj ||Cj – C|| 2 . (B5)

Equation 51

Σj ||Cv(j) – Cv||2  = Σj( ||Cv(j)|| 2 – (Σj Cv(j))(Σk Cv(k))/ M 2
 = Σj ||Cv(j)|| 2 – Σj Σk Cv(j)•Cv(k)/M 2 
 = Σj ||Cv(j)|| 2 – Σj  Cv(j)•Cv(j)/M 2 



 = Σj ||Cv(j)|| 2 – Σj  ||Cv(j)|| 2)/M 
 = (1 – 1/M) Σj ||Cv(j)|| 2 . (B6)

Thus
(1/(M–1)) Σj ||Cv(j) – Cv||2  = (1/M) Σj ||Cv(j)|| 2 . (B7)
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